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Abstract 

This study investigated the application of multidimensional item response theory (IRT) 

models to validate test structure and dimensionality. Multiple content areas or domains within a 

single subject often exist in large-scale achievement tests. Such areas or domains may cause 

multidimensionality or local item dependence, which both violate the assumptions of the 

unidimensional IRT models currently used in many statewide large-scale assessments. An 

empirical K–12 science assessment was used as an example of dimensionality validation using 

multidimensional IRT models. The unidimensional IRT model was also included as the most 

commonly used model in current practice. The procedures illustrated in this real example can be 

utilized to validate the test dimensionality for any testing program once item response data are 

collected. 

Keywords: Test validity, test dimensionality, item response theory (IRT), multidimensional IRT 

models, large-scale assessments. 
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Applying Multidimensional Item Response Theory Models  

in Validating Test Dimensionality:  

An Example of K–12 Large-scale Science Assessment 

Under the item response theory (IRT) framework, test dimensionality is one of the major 

issues explored at the beginning of test development, along with a validity foundation that 

identifies the test purposes, uses, and the inferences to be made about examinees (Schmeiser & 

Welch, 2006). Generally, test dimensionality reflects the number of latent traits test developers 

would like to extract from the test; items are therefore constructed and assembled into test forms 

to align with the intended trait(s) or dimension(s). More technically, McDonald (1981, 1982) 

defined the dimensionality of a test as the number of traits that must be considered to achieve 

weak local independence between the items in the test, where weak local independence requires 

the conditional pair-wise covariance among items in a test to be equal to zero for all values of 

latent trait θ  as shown in the equation below. 

)|()|,()|,( θθθ jjiijjii xXPxXPxXxXP =====  

where iX is the score on item i, and jX is the score on item j. 

Stout (1987, 1990) further relaxed the requirement of weak local independence by 

defining essential independence to require the average value of these covariances to approach 

zero as test length increases.  

Several researchers have addressed the process for validating the intended test 

dimensionality. Kane (2006) pointed out that the validation of proposed test purposes, uses, and 

interpretations should be separated into two stages: development and appraisal. Similarly, 

Schmeiser and Welch (2006) stated that the inextricable link between the test development 
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process and validation serves two functions: (a) to provide support that the test is serving the 

intended test purposes and dimensionality or (b) to suggest that the test design must be refined 

and improved through further empirical analysis.   

In practice, as a part of test development, field test items are administered before the 

operational items or embedded within the operational tests; one of the functions of such piloting 

is to obtain quantitative evidence to ensure the intended test dimensionality. At the appraisal 

stage, when tests are finalized and operationally administered and scored, evidence of test 

dimensionality must be collected and documented. This study addresses the process for 

developing evidence regarding test dimensionality after tests have been administered and 

examinee item response data have been collected. 

Various methods are used to assess test dimensionality; such methods include linear 

factor analysis, nonparametric tests for essential unidimensionality, and the use of 

multidimensional IRT models. Multidimensional IRT models were selected in this study as the 

main method for several reasons. First, as Lane and Stone (2006) stated, one advantage of IRT 

models over linear factor analytic methods is that information from examinee response patterns 

is analyzed as opposed to the more limited information from correlation matrices. Second, 

nonlinear models such as IRT models may better reflect the relationship between item 

performance and the latent ability (Hattie, 1985). Third, the nonparametric test proposed by Stout 

(1987, 1990) has limited power to detect divergence from unidimensionality for short test lengths 

and for small latent trait inter-correlations (Nandakumar, Yu, Li, & Stout, 1998; Stout, Douglas, 

Kim, Roussos, & Zhang, 1996). This may not be a critical issue because longer tests and 

moderate to high latent ability correlations are common in operational settings. Fourth, 

Embretson and Reise (2000) pointed out that multidimensional IRT models have been used to 
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assess dimensionality of tests in which items reflect different skills, knowledge, or cognitive 

processes. Multiple content areas are commonly used for required assessment subjects by the No 

Child Left Behind Act of 2001 (NCLB, 2002) (e.g., reading, math, science).   

Depending on the subject matter, certain tests tend to measure the same construct within 

and across some grades better than others. For example, Skaggs and Lissitz (1988) suggested that 

reading and vocabulary tests might be more unidimensional or may provide more invariant 

scaling results. Wang and Jiao (2009) found evidence for unidimensionality within and across 

grades for a K–12 large-scale reading test using empirical datasets. In contrast to the results for 

reading tests, Wang and Jiao found that two adjacent grade math tests are expected to measure 

some common constructs and have some unique content emphases (e.g., algebra, geometry), 

according to national and state math content standards. The content of science tests is likely to 

shift in many different ways (Reckase & Martineau, 2004), which may be due to the diverse 

content domains defined by the National Science Education Standards (e.g., physical science, life 

science, earth and space science, science and technology, science in personal and social 

perspectives, history and nature of science).  

 Although science tests have been constructed and field tested to ensure the 

unidimensionality in many K–12 large-scale assessments, science assessment with multiple 

content areas may be more prone to multidimensionality when compared to reading and math. 

For this reason, science assessment was selected in our study to explore validating test 

dimensionality and documenting the quantitative evidence using IRT models at the appraisal 

stage when tests have been administered and item response data are available. However, our 

approach can be equally well applied to reading and math testing.  
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Objective 

The objective of our study is to apply IRT models to collect validity evidence for test 

dimensionality once a test has been administered. The IRT models used as quantitative 

approaches to validating and documenting the test dimensionality are the simple-structure 

multidimensional item response theory (MIRT) model and the testlet model (a complex-structure 

MIRT model) as well as the unidimensional item response theory (UIRT) model. An empirical 

K–12 large-scale science assessment is used in this study to illustrate how these models can be 

applied.  

Applying different IRT models to test data reflects different assumptions or beliefs about 

test structure and dimensionality. In the case of the K–12 science assessment, when the simple-

structure MIRT model is applied, abilities in different content areas are treated as different latent 

dimensions (e.g., earth science, life science, physical science); when the testlet model is applied, 

different content areas are modeled as different testlet residual dimensions in addition to a 

dominant dimension that measures students’ general science ability. These two competing 

models are compared to the currently used UIRT model in terms of model data fit as well as item 

and person parameter estimation consistency. No prior study has been found that compared the 

MIRT model, the testlet model, and the UIRT model analyzing K–12 large-scale science 

assessment data to validate test dimensionality.  
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Theoretical Framework 

 Assessing multiple content areas within a single subject test may impose a number of 

psychometric challenges (Patz, 2005). For current K–12 large-scale science assessments, 

unidimensional IRT models are widely used to analyze test data. However, two assumptions 

must be satisfied to apply unidimensional IRT models: unidimensionality and local item 

independence. Unidimensionality holds when one latent ability is measured. Local item 

independence holds when the probability of the response to one item does not affect the 

probability of the response to another item after controlling for person and item parameters 

(Embretson, 2000; Hambleton & Swaminathan, 1985).   

 Unidimensionality may be violated when multiple content areas exist in a single test. The 

psychometric properties of the multiple content coverage of science assessment have been 

studied from multidimensional vertical scaling perspectives (Jiao & Wang, 2008; Reckase & 

Martineau, 2004; Wang, Jiao, & Severance, 2005). In the case of the science assessment for a 

single grade, the multiple content areas can be modeled as multiple latent dimensions by 

applying simple-structure MIRT models; in addition, the latent trait correlations can be estimated 

to determine the strength of the relationships between the multiple dimensions.  

 Local item dependence (LID) can be caused by administering a set of items based on a 

common stimulus such as in the passage-based reading tests and scenario-based science 

assessments. The common stimulus and associated items are called a testlet (Wainer & Kiely, 

1987). Yen (1993) argued that different content areas within a test may impose LID on items 

measuring the same content area. In the case of science assessments containing distinct sub-

content areas (e.g., physical science, life science, earth science), it is highly likely that content 

clustering may cause LID. Thus, testlet models can be applied in modeling LID by modeling 
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content-based testlets or random-effects nuisance dimensions (Cohen, Cho, & Kim, 2005) in 

addition to a general dimension that measures the student’s general science ability.  

The two perspectives of modeling content clustering in a single subject test can be 

realized by applying both simple-structure MIRT and testlet models. A brief review of the 

mathematic formulations for Rasch MIRT and Rasch testlet models follows. 

Rasch Multidimensional Item Response Theory Model 

By constraining the discrimination parameters in the two-parameter multidimensional 

IRT model proposed by Reckase (1997), the Rasch multidimensional IRT model is expressed as 

( )[ ]ik
ji b
p

−+++−+
=

θθθ ...exp1
1

21

 

where jip is the probability of examinee j responding to item i correctly, kθθθ ,...,, 21  represent k 

latent traits or abilities of examinee j, ib  is related to an overall multidimensional difficulty level, 

and jip is the probability of examinee j responding to item i correctly. 

Rasch Testlet Model 

Wang and Wilson (2005) proposed Rasch testlet models by viewing the model as a 

special case of the multidimensional random coefficients multinomial logit model (MRCMLM; 

Adams, Wilson, & Wang, 1997). They treated each testlet effect as a different dimension in 

addition to one general factor underlying each testlet. They proposed the following Rasch testlet 

model: 

)](exp[1
1

)(ijdij
jdi b
p

γθ +−−+
=  

where jθ  is the person j’s latent ability, ib  is the item i's difficulty parameter, )(ijdγ  is the 

interaction between the person j and item i within testlet d, and jdip  is the probability of a correct 



	
  

9	
  

response. The magnitude of testlet effect is represented by 2
)( ijdγσ , which is the variance of the 

)(ijdγ  parameter. 

Figure 1 below provides a side-by-side comparison of model setup among the 

multidimensional model, the testlet model, and the unidimensional model.  

  Multidimensional model Testlet model Unidimensional model 

   

Figure 1. Graphical representations of the three measurement models 

Methods 

The following procedures and analyses can be generalized to any assessment program to 

verify and document test dimensionality.  

Instrument 

The fall 2008 Michigan Science Assessment, Grade 5 test was investigated in this study. 

The Rasch UIRT model was operationally used in the test development and ability parameter 

estimation. A random sample of 5,677 examinees was selected from the total of 116,933 students 

originally tested. The content structure of the Michigan Science Assessment is summarized in 

Table 1. 
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Table 1.  Content structure of the fall 2008 Grade 5 Michigan Science Assessment 

Content Area Number of Items 

Science processes 13 

Earth science 12 

Life science 10 

Physical science 10 

 

Exploratory Analysis  

To investigate whether multidimensionality exists in the Michigan science assessment, 

the exploratory approaches of principal component analysis (PCA) and exploratory linear factor 

analysis (EFA) were implemented first. PCA reduces the number of observed variables to a 

smaller number of principal components that account for most of the variance of the observed 

variables; EFA builds up a linear model of a set of variables by identifying the underlying latent 

factors. For practitioners who would like to implement the two approaches using their own 

datasets, computer programs SPSS, Mplus, and freeware R with relevant packages can perform 

the task in a reasonably straightforward manner.  

Confirmatory Analysis 

Confirmatory methods are used when researchers already have some knowledge about 

the underlying structure of the construct. Once researchers have an idea of the potential latent 

dimension(s) of the test data from the exploratory approaches, they can move on with specific 

IRT models such as MIRT, testlet, and UIRT models for confirmatory analyses. Recall that IRT 

models have advantages over linear factor analysis by using the full information from the item 

response data. In addition, different IRT models make different assumptions regarding the test 
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content and structure. Thus, estimating different IRT models allows practitioners to find the most 

appropriate representation of test dimensionality for the data. 

Multidimensional item response theory and testlet model estimation setup 

            In the MIRT model with simple structure (i.e., each item measures only one latent 

dimension), each content area is treated as a latent dimension. In this case, 45 items measure the 

four dimensions: 13 items measuring science processes, 12 items measuring earth science, 10 

items measuring life science, and 10 items measuring physical science. These four dimensions 

were set to be correlated with one another so that the amount of association among the four latent 

traits can be estimated. In addition, the variances of the latent traits were freely estimated, and 

the importance of the four latent traits can be compared and discussed.  

In the testlet model, each content area was treated as a nuisance testlet dimension in 

addition to the dominant dimension that measures the overall science ability. Specifically, all 

items measure the dominant dimension, and items from the same content area also measure one 

of the four nuisance testlet dimensions. By convention, all dimensions (i.e., both dominant and 

nuisance dimensions) in testlet models were constrained to be orthogonal with each other; thus, 

no correlations were estimated. Variances of dominant and nuisance dimensions were estimated 

and discussed.  

The Marginal Maximum Likelihood (MML) method was used to estimate the three IRT 

models (i.e., MIRT, testlet, and UIRT models) implemented in the computer program ConQuest 

(Wu, Adams, & Halden, 2001). As noted previously, in addition to estimating item and person 

parameters, latent trait variances for the three models as well as the latent traits’ correlations in 

the MIRT model were also estimated. 
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Evaluation criteria I: Goodness of fit 

The likelihood ratio tests were conducted between the nested models (i.e., UIRT vs. 

MIRT, UIRT vs. testlet) to explore whether more complicated models fit better than the 

unidimensional model. In addition, the information-based fit indices AIC, BIC, and sample size 

adjusted BIC were computed and used to inform a better-fitting model for non-nested designs 

(i.e., MIRT vs. testlet). The formulae for the AIC, BIC, and adjusted BIC are as follows: 

koodLogLikelihAIC 22 +−=  

)ln(*2 nkoodLogLikelihBIC +−=  

)
24
2ln(*2_ +

+−=
nkoodLogLikelihBICAdjusted  

where k is the number of parameters in the model for these equations and n is the sample size. 

IRT computer programs usually do not provide direct computations of AIC and BIC. However, 

practitioners usually can find values of -2LogLikelihood and the number of parameters k among 

the estimation results.  

Evaluation criteria II: Parameter estimation consistency 

The consistency of estimated item and person parameters was examined across the three 

estimated IRT models. Specifically, scatter plots were obtained to detect whether the parameters 

estimated from the different models were linearly related, and the correlations between estimated 

parameters from different models were computed to quantify the magnitude of consistency. 
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Results 

Exploratory Analysis 

Principal component analysis was first conducted. One approach to determining the 

number of factors is to select those for which the Eigenvalues are greater than 1. This value 

means that these factors account for more than the mean of the total variance in the items. This is 

known as the Kaiser–Guttman rule (Guttman, 1954; Kaiser, 1960). Comrey and Lee (1992) 

warned that if the instrument contains a large number of items, a large number of Eigenvalues 

will meet this rule.  

Table 2. Principal component analysis Eigenvalue and variance explained 

Component Eigenvalue Variance Explained  
  %  Cumulative % 
1 7.528 16.730 16.730 
2 1.435 3.188 19.918 
3 1.092 2.428 22.345 
4 1.044 2.320 24.665 
5 1.033 2.296 26.961 
6 1.013 2.251 29.212 
7 1.004 2.231 31.444 
8 .982 2.183 33.626 
9 .968 2.151 35.777 
10 .963 2.139 37.916 
… … … … 

 

The Eigenvalues are reported in Table 2. Among the seven components meeting the rule, 

the first two components had Eigenvalues much greater than 1 (i.e., 7.528 1.435), which is strong 

evidence of multidimensionality. The following five components had Eigenvalues only slightly 

over 1. A corresponding scree plot of the PCA is shown in Figure 2 for the pattern. 



	
  

14	
  

 

Figure 2. Scree plot of principal component analysis 

 
Gorsuch (1983) suggested that the rule is most accurate when there are fewer than 40 

items, the sample size is large, and the number of factors is expected to be between [n of 

variables divided by 5] and [n of variables divided by 3]. In our case, we met the condition of 

large sample size; however, there are more than 40 items (i.e., 45 items). Moreover, the expected 

number of factors is 4, which is not between 45/5 (or 9) and 45/3 (or 15). Therefore, the result of 

seven components to represent the data is doubtful. By examining the magnitude of the 

Eigenvalues, we concluded that at least two components exist. Therefore, the data suggested a 

lack of unidimensionality.  

Exploratory Factor Analysis (EFA) with tetrachoric correlations (assuming underlying 

latent traits are normally distributed) was also conducted to explore the dimensionality and the 

potential number of dimensions. One to ten factors were explored, and model root mean square 

errors (RMSE) were obtained as reported in Table 3. 
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Table 3. EFA number of factors, RMSE, and RMSE reduction 

No. of 
Factors 

RMSE RMSE 
Reduction 

1 0.0305 --- 
2 0.0248 0.1869 
3 0.0231 0.0685 
4 0.0214 0.0736 
5 0.0200 0.0654 
6 0.0190 0.0500 
7 0.0180 0.0526 
8 0.0171 0.0500 
9 0.0162 0.0526 
10 0.0153 0.0556 

EFA, exploratory linear factor analysis; RMSE, root mean square errors. 

Inclusion of the second factor in the model resulted in a nearly 19% reduction of the 

RMSE. The inclusion of the third, fourth, and fifth factor in the model reduced about 6.9%, 7.4%, 

and 6.5% of the RMSE. When the analysis included more than five factors in the model, the 

reduction of the RMSE was less.  

The RMSE reduction from EFA was found to be consistent with the results from PCA; at 

least two factors were needed to represent the data. It was also found that either four or five 

factors can explain the data well. We expected four factors to account for the four content areas 

of the science assessment, so it conceptually made sense to adopt the four-factor solution. In 

these analyses, the statistical information must often be weighed against the theory that supports 

the test construction. IRT models were applied to the data as confirmatory approaches to 

determine the most appropriate test structure and dimensionality for the data. 

Confirmatory Analysis: Estimating Item Response Theory Models 

Three IRT models—namely the UIRT, the MIRT, and the testlet model—were fit to the 

data. The models were examined through model–-data fit statistics, estimated latent trait 
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structures (i.e., latent trait variances and correlations), and the item and person parameter 

estimation consistency.  

Table 4. Goodness of fit 

 Estimation Model 
 UIRT MIRT Testlet 

-2*loglikelihood 271414.5415 271129.4673 271356.6142 
Number of Parameter 46 55 50 

Likelihood Ratio Test p-value --- 3.8084E-56 7.90405E-12 
AIC 271506.5415 271239.4673 271456.6142 
BIC 271812.1737 271604.8971 271788.8231 

Adjusted BIC 271665.9994 271430.1235 271629.9381 
UIRT = unidimensional item response theory; MIRT = multidimensional item response theory. 

Goodness of fit indices are reported in Table 4 for the three IRT models. The likelihood 

ratio tests were performed for two sets of nested models, where the UIRT model was nested 

within the MIRT model, and nested within the testlet model; it was hypothesized that the more 

complex models (i.e., MIRT model, testlet model) would not improve the model–data fit over the 

simpler model (i.e., UIRT model) significantly. The resulting p-values of the two sets of 

likelihood ratio tests indicated that the null hypotheses were both rejected, meaning that the more 

complicated models (e.g., MIRT model, testlet model) fit significantly better than the 

unidimensional model for the current data. 

Now further decisions must be made while selecting the better-fitting model between the 

two non-nested models: the MIRT model and the testlet model. Information criteria (e.g., AIC, 

BIC, Adjusted BIC) were computed. The smaller the information criteria, the better model–data 

fit. Therefore, the results in Table 4 indicate that the MIRT model was a better-fitting model.  
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Table 5. Latent traits variance and correlation estimation 

 Estimation Model 
 UIRT  MIRT Testlet 
 θ  

4321 θθθθ  4321 θθθθθ  
Variance 

 
Correlation 

 
 

0.895 
 
 
 
 

 0.958     
 0.924    0.732 
 0.949    0.963   0.860 
 0.957    0.945   0.964   1.255  

       

0.896 
             0.076 
                         0.063 

                   0.033 
                                            0.070        

where 
θ  represents the overall science ability in UIRT and testlet model; 
1θ  represents life science ability in MIRT, and residual due to life science nuisance 

dimension in testlet model; 
2θ  represents physical science ability in MIRT, and residual due to physical science 

nuisance dimension in testlet model; 
3θ  represents science processes ability in MIRT, and residual due to science processes 

nuisance dimension in testlet model; and  
4θ  represents earth science ability in MIRT, and residual due to earth science nuisance 

dimension in testlet model. 
 
Before reaching a final conclusion on the best-fitting model and the most appropriate test 

structure and dimensionality, latent trait variances (in bold) were obtained and are presented in 

Table 5 for the relative importance of the latent trait(s) for each of the models. The ability 

variance of the UIRT model was estimated as 0.895, which was almost the same as the primary 

ability variance 0.896 in the testlet model. In this model, the variances of the residual testlet 

dimensions range from 0.033 to 0.076, indicating the testlet dimensions are negligible. In the 

MIRT model, the variances of the four content-based ability dimensions ranged from 0.732 to 

1.255, and the latent dimension correlations were all greater than 0.900. Although the MIRT 

model was the best-fitting model statistically, the small magnitude of the testlet dimensions in 

the testlet model and the high latent dimension correlations in the MIRT model provided 

practical evidence of unidimensionality for the science assessment. It is entirely possible that 

applications using a unidimensional model will be satisfactory from an applied standpoint. In 
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contrast, from a conceptual standpoint, one can debate whether a single dimension, two 

dimensions, or even four dimensions provide the best conceptual solution. 

 

Figure 3. Scatter plots of item parameter estimates 

To confirm the test unidimensionality and to evaluate parameter estimation consistency 

across the three models, scatter plots of the estimated item and person parameters between any 

two of the three models are presented in Figures 3 and 4, respectively. 

As shown in Figure 3, the paired item parameter estimates were all linearly related. The 

correlations of the estimated item parameters of the three models reported in Table 6 indicate 

perfect linear relations among the latent ability estimates from the three models. Appendix A 

provides item parameter estimates from each of the three models.  
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Table 6. Correlation of model estimated item parameters 

 UIRT MIRT Testlet 

UIRT --- 0.999 0.999 

MIRT  --- 1 

Testlet   --- 

UIRT = unidimensional item response theory; MIRT = multidimensional item response theory. 

Figure 4 provides scatter plots of the estimated person parameters between any two of the three 

models. 

 

Figure 4. Scatter plots of person parameter estimates 

Again, it is obvious that all of the models were essentially linearly related. The 

correlations of the estimated person parameters of the three models in Table 7 confirmed nearly 

perfect linear relations among the latent ability estimates from the three models. 
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Table 7. Correlation of model estimated person parameters 

 UIRT MIRT_1 MIRT_2 MIRT_3 MIRT_4 Testlet_G 

UIRT --- 0.996 0.998 0.999 0.996 1.000 

MIRT_1  --- 0.990 0.994 0.996 0.995 

MIRT_2   --- 0.997 0.994 0.998 

MIRT_3    --- 0.997 0.999 

MIRT_4     --- 0.996 

Testlet_G      --- 

UIRT = unidimensional item response theory; MIRT = multidimensional item response theory. 

The scatter plots and the correlations of the item and person parameter estimates of the 

three models provided evidence that the UIRT model, the MIRT model, and the testlet model 

resulted in almost perfect linearly related item and person parameters for the science assessment. 

In other words, the UIRT model provides a simple, adequate, and consistent representation of the 

data. The results from the three models provided quantitative validity evidence for applying 

UIRT models in this statewide science assessment, and should be well documented in the 

technical report of the testing program to validate the test structure and dimensionality. 

Discussion 

The results from analyzing the science assessment suggested that the intended test 

unidimensionality was achieved. It provided test developers and test users with confidence and 

trust on appropriate use and interpretation of current science assessment.  

Although science assessment was used in the study, other subjects such as reading and 

math may also be exposed for lack of unidimensionality. For example, reading tests usually have 

domains of vocabulary, comprehension, and literature; math tests may have domains of algebra, 
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geometry, and statistics. Therefore, the methods presented in this study can be applied to any 

subject test designed with different content and domain coverage for exploration and, hopefully, 

verification of the test structure and dimensionality. 

This approach to validating test dimensionality was applied to K–12 assessments in 

which measuring students’ achievement, differentiating students on a wide span of ability, and 

assigning students to different proficiency categories (e.g., basic, proficient, advanced) are the 

primary goals. Other testing programs such as college entrance exams (e.g., SAT, ACT), 

licensure, and certification testing with the focus on selecting students who demonstrate mastery 

of the specific knowledge and skills can also be subject to these analyses and procedures. Tests 

are designed to measure certain latent ability dimension(s). Whether the test is intended to 

differentiate or select examinees, the intended test structure and dimensionality must be 

empirically validated. Moreover, the admission, licensure, and certification tests usually contain 

more items measuring the same knowledge and skill. Thus multidimensionality or local item 

dependence caused by item clustering may be even a more important issue to be investigated.  

The procedures to validate the test structure and dimensionality are summarized for 

practitioners as follows:  

First, one should examine the test’s intended structure and dimensionality: How many 

intended dimensions of ability does the test encompass? Which IRT model was used to calibrate 

the data? How many domains or content areas does the test include? Gathering this information 

will help practitioners understand the theoretical design of the test, so that analyses and 

procedures confirming test dimensionality can be conducted effectively.  
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Second, exploratory approaches (e.g., PCA, EFA) should be conducted to identify the 

existence of multidimensionality and to determine the potential latent dimension(s) considering 

the intended test dimensionality.  

Third, confirmatory analysis can then be implemented by estimating several potential 

IRT models with different assumptions of the test structure using MIRT, testlet, and UIRT 

models.  

Fourth, comparisons must be made across the models in terms of model–data fit, 

parameter estimates, covariance matrix estimates, and consistency of parameter estimates to 

determine the best-fitting model as well as the most appropriate test structure and number of 

dimensions.  

Practitioners will always discuss when to apply multidimensional IRT models and when 

to apply UIRT models for a testing program at both developmental and appraisal stages. At the 

initial test formation stage, the important question test designers should ask is how many ability 

dimensions the test needs to assess. If a single ability (e.g., general math ability) is being 

measured, a UIRT model should be adopted. If more than one ability is being measured (e.g., 

algebra, geometry), multidimensional IRT models should be adopted. The model a practitioner 

selects is determined by the intended inferences regarding the latent abilities and how complex 

the test needs to be. At the final appraisal stage, it is always safer to start with multidimensional 

IRT models (e.g., MIRT, testlet models) even if the test was developed with UIRT models; more 

complex models (e.g., MIRT, testlet models) provide multiple-dimensional estimates for 

practitioners. This permits practitioners to determine if the complex models supply unique 

information or just redundant information by examining the latent ability corrections in MIRT 
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models and the testlet variances in the testlet models. High correlations and small testlet 

variances provide evidence for test unidimensionality. 

This study is limited by investigating only one empirical assessment dataset; thus, the 

conclusion of its test unidimensionality is not generalizable to other K–12 large-scale 

assessments. Future simulation studies can be designed to determine under what test condition 

each of the UIRT, MIRT, and testlet models would be more appropriate for modeling 

assessments with content clustering. The intent of this paper is not to settle that issue. Instead, 

the intent is to provide guidelines for the practitioner who is interested in such matters. We hope 

all practitioners will be interested because users will want to draw inferences from student 

performance. The accuracy of these inferences will depend, in part, on the complexity of the 

dimensionality of the tests that serve as their basis. 
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Appendix A. Item Parameter Estimates of the Three Models 

Item Estimation Model 
No. UIRT MIRT Testlet 
1 -1.999 -2.017 -2.016 
2 -1.348 -1.361 -1.361 
3 -0.718 -0.725 -0.725 
4 -0.910 -0.919 -0.919 
5 -1.547 -1.561 -1.561 
6 -1.939 -1.892 -1.892 
7 -0.813 -0.792 -0.792 
8 -0.167 -0.163 -0.163 
9 -0.975 -0.950 -0.950 

10 -0.063 -0.062 -0.062 
11 -0.559 -0.556 -0.556 
12 -1.253 -1.246 -1.246 
13 -2.620 -2.607 -2.607 
14 -0.086 -0.087 -0.087 
15 -1.705 -1.793 -1.793 
16 0.333 0.331 0.331 
17 -0.143 -0.142 -0.142 
18 -2.730 -2.717 -2.717 
19 -0.916 -0.910 -0.910 
20 -0.338 -0.354 -0.354 
21 -0.582 -0.612 -0.612 
22 -1.923 -2.022 -2.022 
23 -0.405 -0.426 -0.426 
24 -1.762 -1.853 -1.853 
25 -1.231 -1.296 -1.296 
26 -1.572 -1.654 -1.654 
27 -1.415 -1.489 -1.489 
28 -0.344 -0.361 -0.361 
29 -2.579 -2.705 -2.705 
30 -1.660 -1.619 -1.619 
31 -0.540 -0.526 -0.526 
32 -1.850 -1.804 -1.804 
33 -0.775 -0.755 -0.755 
34 -0.093 -0.091 -0.091 
35 -1.482 -1.473 -1.473 
36 0.078 0.077 0.077 
37 -1.150 -1.143 -1.143 
38 -1.423 -1.415 -1.415 
39 0.421 0.418 0.418 
40 -0.257 -0.255 -0.255 
41 -0.749 -0.757 -0.757 
42 -1.713 -1.728 -1.728 
43 -1.679 -1.694 -1.694 
44 -0.393 -0.412 -0.412 
45 -0.379 -0.383 -0.383 

 


